Application of Generalized Maximum Entropy Estimator to the Two-way Nested Error Component Model with III-Posed Data

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The unbalanced nested error component regression model

This paper considers a nested error component model with unbalanced data and proposes simple analysis of variance (ANOVA), maximum likelihood (MLE) and minimum norm quadratic unbiased estimators (MINQUE)-type estimators of the variance components. These are natural extensions from the biometrics, statistics and econometrics literature. The performance of these estimators is investigated by mean...

متن کامل

The Data-Constrained Generalized Maximum Entropy Estimator of the GLM: Asymptotic Theory and Inference

Maximum entropy methods of parameter estimation are appealing because they impose no additional structure on the data, other than that explicitly assumed by the analyst. In this paper we prove that the data constrained GME estimator of the general linear model is consistent and asymptotically normal. The approach we take in establishing the asymptotic properties concomitantly identifies a new c...

متن کامل

A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight

The method of Generalized Maximum Entropy (GME), proposed in Golan, Judge and Miller (1996), is an information-theoretic approach that is robust to multicolinearity problem. It uses an objective function that is the sum of the entropies for coefficient distributions and disturbance distributions. This method can be generalized to the weighted GME (W-GME), where different weights are assigned to...

متن کامل

The Effect of Observation Data Sampling Methods on Infiltration Areas by Maximum Entropy Model

Statistical modeling methods are based on multivariate regression methods and require the presence and absence location of data for the construction of the model. In most cases, there is no trustworthy absence data. Therefore, other methods that are based only on the presence of the phenomenon are used. Considering the importance of modeling - saving time and cost and the probable prediction of...

متن کامل

A Maximum Entropy Estimator for the Aggregate Hierarchical Logit Model

A new approach for estimating the aggregate hierarchical logit model is presented. Though usually derived from random utility theory assuming correlated stochastic errors, the model can also be derived as a solution to a maximum entropy problem. Under the latter approach, the Lagrange multipliers of the optimization problem can be understood as parameter estimators of the model. Based on theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2009

ISSN: 2287-7843

DOI: 10.5351/ckss.2009.16.4.659